通信电源在整体通信机房中占了重要作用。面对电信拆分、人员重组等新的发展形势,对电源维护管理工作提出了更新、更高地要求。
近十年的电信大发展及产品技术的更新,使得当前通信设施呈现网络规模大、智能化程度高、品牌系列繁杂、无人值守、集中监控化程度高的新特点,而电信的拆分、人员的重组、职业生涯的晋升,使得维护上的人力资源和技术力量的发展,明显滞后于通信设施的发展,维护人员对厂商的依赖性增强,设备故障带来的损失风险增大。通信电源作为通信设施的心脏,面对新的形势,也应对维护管理工作提更新的、更高的要求。笔者经过这几年的摸索,积极与兄弟单位和电源厂商交流,积累了一些经验,并就如何在新形势下更好地做好电源设备维护管理工作提出了一些探索性办法。
当前电源设备品牌繁杂,按照入网检验标准规定的性能指标,各家设备大同小异,而在结构、人性化设计、智能化监控、地域/特定环境解决方案,以及售后服务保障上,各家则千差万别。对这一些品牌设备如选用不当,将会使维护资源分散、力量削弱,维护工作难以深入,售后服务难以获得厂家保障。
依据管理目标,遵循“保证运行可靠、状态监测受控、维护时间缩短、成本费用降低”的原则和优先顺序对品牌和设备做考察筛选,优选品牌数量最好不超过3个,以利于技术人员提高技术水平,设备有了一定的规模,也容易争取到较好的售后服务条件;同时,同一品牌设备尽量安排在同一地区使用,以利于维护人员能单一、深入地进行维护。
设备选用前,应预先调查设备工作环境(包括地理条件、天气特征情况、市电环境、值守条件、支撑体系等)及被选设备对工作环境的适应性。实践证明,一些设备的功能和性能并不一定适用于所有条件,同一设备在不同的工作环境下,故障率会大相径庭。因此,选择设备前,一定要进行对自身环境的调查、对选择使用设备的分析及广泛听取其他各地市电信部门的具体使用情况的调查意见,对非适用功能,应予以去除或屏蔽;对重要指标,必要时可作相应的测试,甚至在实验网或非重要局站试用。
安装及验收工作也是预防工作的一个关键点,厂家经过检验合格的产品,经过多次转运、颠簸(尤其山区地区)后,到安装现场可能会发生内外部电气接触的松动和脱落;出厂参数设置也不一定与实际相符合,这一些都会成为日后运行的故障隐患。在安装及验收工作中将这一些因素进行排除、校正,将对设备日后可靠运行提供必要的保障。
在基础管理工作上,首先倡导主动维护、预防性维护,消除故障苗头。通过每年进行诸如“夏季供电高峰期前电源设备防掉电”、“夏季供电高峰期后加强电源设备维护保养和预检预修、提高设备完好率”等专项治理及劳动竞赛行动,以自查、互查、*比和交流形式,锻炼维护技术队伍、提高维护人员积极性、提升设备维护管理质量。同时充分的利用各类监控手段,及早发现故障,然后集中技术力量,以最快的速度处理,以压缩故障历时。对于突发和排障时间长,会引起供电中断的故障,应制定应急处理预案,并定期加强演练。
目前电信系统维护资源相对设备正常运行总量而言,还略显薄弱,部分设备维护承包责任人还没有足够能力及时解决、排除各种故障。在此情形下,在地市范围内,或扩展到全省范围内,建立一个包含技术专家组、技术骨干队伍、日常维护人员在内,并将厂商技术人员纳入其中的分级技术支撑体系,通过逐级、实时申告的流程实施分级技术上的支持,对电源的维护保障工作将有十分的意义。
在支撑体系范围内,对典型故障的调研,对各类故障的分类统计(如质量类、外因类、疏忽类等),并进行数据档案存档,信息资源共享等措施,将对维护队伍的技术快速提升提供一个良好的平台。
(1)在交流供电系统中,逐步推广自动倒换装置,并具备机械式手动切换功能,以备紧急时使用。大容量(2000kVA以上)交流供电系统中,提倡用两个子供电系统供电(变压器和油机)分别供电,子供电系统之间采用联络柜互为备用,油机尽量不使用并机运行。重要局点(如枢纽局、数据中心、IDC中心等)要争取引入两路不同变电站的高压线路,提高供电可靠性。由于大容量低压断路器一般不留备件,一旦损坏,判断故障原因和维修时间比较久,应及时启动应急预案用临时电缆跨接临时供电(要排除短路因素才可),避免因时间不足,导致电池放光的事件发生。
(2)单套高频开关电源容量不宜过大。电源模块开机数量要依据环境和故障情况确定,具有整体破坏性因素(如市电过压)的局站,开机数量不宜多。电池充电电流限制在0.1C10。直流熔丝的额定电流应不大于最大负载电流的2倍,保证负载端短路时熔丝及时熔断,避免影响整个直流供电系统的输出电压大幅瞬降。
(3)大容量UPS是电源维护管理工作的难点,组网应优先选用“N+1”并机方式,设计、会审和安装时维护部门务必要全程介入,关注以下问题:UPS主路和旁路供电最好由两个空气开关分别供电;UPS输出零地电压过高会造成网络数据丢包率提高,因此要采取一定的措施将UPS输出零地电压降低到1V以下;UPS电池尽量使用单体为2V阀控密封式蓄电池;对UPS设备,应着重关注输入功率因数和谐波含量等重要指标,特别要协调好与油机的配合,油机容量与UPS容量比应在2倍以上,确保油机和UPS都能正常工作。
(4)柴油发电机组作为备用电源,要保证良好的备用状态。电信系统选用油机额定容量一般取备用功率,使用时要注意带满载要控制在1h以内,长时间运行要按90%的备用功率使用。发动机功率与发电机配比至少要在1.1以上,发电机优先选用永磁、DVR型号,能有很大成效避免负载的谐波干扰。同时要保证油机能充分的发挥作用,设计要考虑油机和市电之间自动切换要有电气连锁,考虑油机房通风、排烟、避震和消噪等事项,还要定期做好维护保养和试机,常常检验核查启动电池和自动抽油系统等等。
(5)蓄电池是电信通信网上后备电源的核心。应根据维护规程的要求,制订出一套蓄电池容量测试和核对性容量试验的操作规程,定制采购了蓄电池容量测试设备,这中间还包括蓄电池容量测试仪、移动式假负载、移动式充电机、蓄电池单体活化仪,并配备到各区域维护站。今后福州本地网逐步对网上的蓄电池进行容量测试和核对性试验,希望消除由蓄电池带来的故障隐患。针对部分接入点电池经常小电流长时间放电轻易造成出现落后电池的问题,宜采取调节整流器的自动均浮充的设定、调整整流模块开机数量和定时进行容量试验等方法,实践证明效果比较理想。
通信电源的管理工作应根据技术发展、管理发展和实践反馈中不断地探索、改进,终极目标是一直在改进管理工作提高设备运行可靠性。
通信电源提供给通信网络提供直流能量,而蓄电池则在市电故障的时候提供后备能量。一方面动力设备很重要,另一方面其设备配置成本在基本建设费用CAPEX也占了一定的比例。如何合理的对通信电源的配置来优化,是降低CAPEX和运维费用OPEX的重要一环。 现有通信电源配置方法的思考 目前的通信电源配置方法一般如下: Step1:计算负载电流I1(A) = 直流负载功耗(W)/48(V), Step2:计算电池容量C1(Ah)=1.25*KT*T(h)*I1(A) 其中: KT:电池时间校正系数,是蓄电池厂家提供的,表示不同放电时间情况下电池实际放出容量与标称容量之间的比值。一般查图表获得。 1.25:电池容量补偿系数。电池使用的过程中实际容量
随着IT技术的发展,带动了各行各业,局域网、广域网和互连网的普遍实施, 多数单位有了自己的网站,各系统也建立了自己的网络。因此,对系统的可靠性要求也提高了。 传统的UPS电源往往是等到机器出现了故障,异常供电,才由值班人员去查找故障所在,这样势必耗费很多宝贵的时间,而且很多场合也是不允许的。随着微处理器CPU和监控软件的引入,大幅度提升了UPS的自检功能。多数UPS都配备了自己的监控软件,当UPS故障时,监控软件就能够最终靠面板上的液晶显示屏,将故障的部位或器件显示出来,非常大地节省了时间。 随网络技术的普及,用户又向UPS提出了更高的要求:UPS应具有无人值守功能,并且不但具有自检功能,还应具有联网功能
现代电信系统对直流供电电压的质量发展要求很高,电压不允许瞬间中断,且其波动、瞬变和杂音电压应小于允许的范围,其中杂音电压是指整流设备及直流交换器输出电压中的脉动成分,这种脉动成分由各种频率交流电压组成。杂音电压有以下几种: 1、电话衡重杂音。由于人耳及耳机对各种频率的响应不同,将25Hz~5KHz频段中各种频率的杂音电压等效为800HZ的电压值后,取其方均根值。电话衡重杂音亦称电线、峰-峰值杂音。指整流电路中产生的幅度最大的针状脉冲电压,叠加在直流输出上,能使逻辑电路误动作。 3、宽频杂音。指不同频率的杂音电压有效值的方均根值。 4、离散频率杂音。指3.4KHz~30MHz频段中任一频
设备对杂音电压的控制要求 /
电源 技术的精髓是电能变换,即利用电能变化技术将市电或电池等一次电源变换成适用于各种用电对象的二次电源。其中,开关电源在电源技术中占有主体地位,从10kHz发展到高稳定度、大容量、小体积、开关频率达到兆赫兹级,开关电源的发展为高频变化提供了硬件基础,促进了现代电源技术的繁荣和发展。 一、通信电源的发展现状 (一)供电系统的现状 通信电源是通信系统必不可少的重要组成部分,其设计目标是安全、可靠、高效、稳定、不间断地向通信设施提供能源。通信电源一定要具有智能监控、无人值守和电池自动管理等功能,从而满足网络时代的需求。通信电源系统由交流配电、整流柜、直流配电和监控模块组成。 (二)通信电源设备的更新换代 近年来,
1引言 《通信电源和空调集中监控系统技术方面的要求》中规定监控系统在结构上是一个多级的分布式计算机监控网络 ,一般可分为三级,即监控中心(SC—Supervision Center)、监控站(SS—Supervision Station)和监控单元(SU—Supervision Unit)。对于通信电源监控系统来说,没有必要设置监控中心,因此能简化为两级集散式结构,由上位机和下位机组成 。 2通信电源监控系统组网方案探讨 通信电源监控系统的组网目前主要可优先考虑采用以下几种方案: 第一种是目前仍然普遍的使用的主从式总线网络,这种网络结构以上位机为中心,通过RS485或RS422接口将各种具有通信功能的下位机连接起来
监控系统组网方案的设计 /
1 前言 “节能减排”成为2008年通信领域最热门的话题之一,行业内对此进行讨论和交流的研讨会不断召开,中国移动等运营商甚至为此成立了专门的管理办公室。多家运营商在各种类型的产品的集中采购中,将是不是具备节能功能作为重要的技术评价指标。在中国移动和联通的集中采购中,通信电源全系列的产品都明确了“节能减排” 的功能要求。 中兴通讯动力产品线关注通信电源及UPS产品的节能功能已有两年时间,通信电源方面之前已为国内及国际运营商开发过定制版本,模块化UPS产品也在研发初期将相应节能功能写入开发任务书。随着通信电源产品节能功能的实现和模块化UPS产品T080的问世,中兴动力产品的“呼吸式”功率管理也应运而生。 2 呼吸
的节能方案 呼吸式功率管理显效 /
随着通信网络规模的逐步扩大,通信电源的数量也在不断地增多。对通信电源的监控非常非常重要。通信基站的电源一般处于比较分散的状态,大多数情况下无人看守。为了能够更好的保证对通信电源的实时监控,研发一种能够实时监控通信电源的系统具有十分重要的意义和价值。 通信电源监控系统按照数据传输方法分类,包括电话线通信的监控系统、GSM通信的监控系统、基于Web通信的监控系统等。电话线式的系统要固定的线路,成本比较高;GSM通信采用短信通道传输数据,若需要传输的数据量比较大,费用也较高;Web技术功能比较完善,性能优越,但是基于Web通信的监控系统要铺设网络线路,针对于分散点较多的情况需要用多个Web站点,费用也较高。针对以上缺点,现采用基于
监控系统设计 /
在通信企业中,电源是通信系统的“心脏”, 是全程全网畅通的根本保障。供电系统的可靠性、稳定性和供电质量,直接影响到通信网络能否稳定的运行。应急、备用通信电源是通信电源系统中必不可少的部分。在特定的环境和特殊时期都发挥着无法替代的作用。现阶段的应急、备用通信电源,有的只采用了简单的闭环控制,有些甚至还采用着开环控制管理系统,这必然会造成电源与市电的切换过程时间长、输出电源质量差和消耗能源多的缺点,并且难以满足通信网络的稳定运行的要求。而进口应急、备用通信电源虽然能达到一定的要求,但其价格昂贵,造成了企业开支较大。本文提出了一种新型的应急、备用通信电源的设计的具体方案,能达到可靠、稳定、简单易操作和输出电源质量高的特点。并且由于本系统采用了模糊和神
东芝1200V SIC SBD “TRSxxx120Hx系列” 助力工业电源设备高效
2024 瑞萨电子MCU/MPU工业技术研讨会——深圳、上海站, 火热报名中
Follow me第二季第4期来啦!与得捷一起解锁蓝牙/Wi-Fi板【Arduino Nano RP2040 Connect】超能力!
嵌入式工程师AI挑战营(进阶):基于RV1106部署InsightFace算法,实现多人的实时人脸识别
在Electronica期间,安森美首席执行官Hassane El-Khoury在展会现场接受了Power Electronics News的采访,详细的介绍了安森美此次带来的新 ...
Treo 平台采用模块化架构,可加快智能电源管理、传感器接口和通信解决方案的开发速度Treo 平台基于 65 纳米节点的 BCD 工艺技术,支 ...
贸泽开售用于快速开发精密数据采集系统的 Analog Devices ADAQ7767-1 μModule DAQ解决方案
贸泽开售用于快速开发精密数据采集系统的Analog Devices ADAQ7767-1 μModule DAQ解决方案2024年11月6日 – 提供超丰富半导体和电子 ...
ADC可以称作是模拟芯片领域的明珠。作为一种关键器件,ADC设计难度大,专利墙高,所以国内长期处在追赶的状态。近年来,国产ADC发展极为迅 ...
集Hi-Fi、智能和USB多通道等特征于一体的微控制器——迎接数字音频新时代
随着诸多技术突破和全新流媒体服务的不断融合,在智能家居和智能音箱市场日益繁荣的今天,消费者对于音频的需求已不再仅仅局限于音质本身, ...
意法半导体推出灵活、节约空间的车载音频 D类放大器,新增针对汽车应用优化的诊断功能
S3C2440A串口驱动-WINCE6.0下通过串口和外设进行数据通信(二)
UltraSense Systems推出新一代多模式传感解决方案TouchPoint Edge
Diodes 公司推出的 20Gbps 2x2 交换切换器,可让汽车媒体与驾驶辅助系统实现快速多任务/切换
AMD 推出第二代 Versal Premium 系列:FPGA 行业首发支持 CXL 3.1 和 PCIe Gen 6
Rambus宣布推出业界首款HBM4控制器IP,加速下一代AI工作负载
站点相关:数模混合数据转换放大器音响接口电路无线模拟其他技术电子百科综合资讯EMC/EMI模拟资源下载模拟电子习题与教程仙童传奇